
Bernoulli’s inequality  (for integer cases) 

     (1 + x)n ≥ 1 + nx          (1) 

with conditions: 

(a) (1) is true   ∀ n∈N ∪ {0}  and  ∀x∈ R,  x ≥ -1. 

(b) (1) is true  ∀ n∈2N  and  ∀x∈ R. 

 

The strict inequality:    (1 + x)n > 1 + nx          (2) 

is true for every integer  n ≥ 2  and every real number  x ≥ -1  with  x ≠ 0. 

(The strict inequality is not discussed in the following.) 

 

Proof  1     Use Mathematical Induction 

Condition (a) 

Let P(n) be the proposition: (1 + x)n ≥ 1 + nx   ∀n∈N ∪ {0}  and  ∀x∈ R,  x ≥ -1. 

For P(0),      (1 + x)0 = 1 ≥ 1 + 0x     ∴ P(0) is true. 

Assume P(k) is true for some k∈Z,  k ≥ 0, 

that is,   (1 + x)k ≥ 1 + kx   ∀ k∈N ∪ {0}  and  ∀x∈ R,  x ≥ -1.   (3) 

 

For P(k+1), (1 + x)k+1 = (1 + x)k(1 + x) 

   ≥ (1 + kx) (1 + x) ,  by  (3)  and also note that since  x ≥ -1, the factor  (x + 1) ≥ 0. 

   = 1 + (k + 1) x + kx2

   ≥ 1 + (k + 1) x 

∴ P(k+1) is also true. 

By the Principle of Mathematical Induction, P(n) is true  ∀n∈N ∪ {0}  and  ∀x∈ R,  x ≥ -1. 

 

Condition (b) 

Let P(n) be the proposition: (1 + x)n ≥ 1 + nx   ∀ n∈2N  and  ∀x∈ R. 

For P(0),       (1 + x)0 = 1 ≥ 1 + 0x     ∴ P(0) is true. 

For P(2),   (1 + x)2 = 1 + 2x + x2 ≥ 1 + 2x,   since x2 ≥ 0, ∀x∈ R. 

∴ P(2) is true. 

 

Assume P(k) is true for some k∈Z,  k ≥ 0, 

that is,   (1 + x)k ≥ 1 + kx   ∀ k∈N ∪ {0}  and  ∀x∈ R,  x ≥ -1.   (4) 

 

For P(k + 2), 

   (1 + x)k+2 = (1 + x)k (1 + x)2 ≥ (1 + kx)(1 + 2x),  by (4) and P(2). 

     = 1 + (k + 2) x + 2kx2

     ≥ 1 + (k + 2) x,    since k > 0  and  x2 ≥ 0, ∀x∈ R. 

∴ P(k + 2) is also true. 

By the Principle of Mathematical Induction, P(n) is true ∀ n∈2N  and  ∀x∈ R. 

Condition (a) is discussed only in the following. 
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Proof  2  Use A.M. ≥ G.M. 

 Consider the A.M. and G.M. of n positive numbers (1 + nx), 1, 1, ….,1  [with (n-1) “1”s] 
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  ∴ (1 + x)n ≥ 1 + nx            (1) 

  

Note : Numbers should be positive before applying A.M. – G.M. theorem. 

   In the numbers used in A.M.-G.M. above, 1 > 0 and  1 + nx ≥ 0, i.e. 
n
1

x −≥ . 

   However, if   1 + nx < 0,   since it is given that  x ≥ -1, or  x + 1 ≥ 0, 

   L.H.S. of (1) = (1 + x)n ≥ 0 

   R.H.S. of (1) =  1 + nx < 0 

   ∴ (1 + x)n ≥ 0 > 1 + nx, which is always true. 

   ∴ x ≥ -1 and not 
n
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Proof  3  Use Binomial Theorem 
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(b) For x = 0,   obviously  (1 + x)n ≥ 1 + nx  is true. 

(c) For  -1 < x < 0,   (The proof below is not very rigorous.) 

Put  y = -x,   then   0 < y < 1, 
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 Put y = 0, we have: 
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 Now   0 < y < 1 ,  ∴ y2 > y3 > …> yn 

 Therefore in (7), each term is multiplied by a factor that is smaller than the term before, 
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 From (6), 

   (1 – y)n ≥ 1 – ny   for 0 < y < 1. 

 or  (1 + x)n ≥ 1 + nx   for -1 < x < 0. 
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Extension of Bernoulli’s inequality 

Given x > -1, then 

(a) (1 + x)r ≤ 1 + rx  for  0 < r < 1          (9) 

(b) (1 + x)r ≥ 1 + rx  for  r < 0  or  r > 1         (10) 

 

Firstly we give the proof that r is a rational number first. 

 

Proof  4   Use A.M. ≥ G.M. 

Since  r ∈ Q,   r = 
q
p

 

(a)   Let  0 < r < 1, ∴ p < q,  q – p > 0.  Also 1 + x > 0, 
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(b)  Let  r > 1, 

  (i) If  1 + rx ≤ 0, then  (1 + x)r > 0 ≥ 1 + rx.  

  (ii) If  1 + rx > 0,  rx > -1. 

   Since  r > 1, we have 1
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   ∴ (1 + x)r ≥ 1 + rx. 

 

  Let r < 0,  then  - r > 0. 

  Choose a natural number n sufficiently large such that  0 < -r/n < 1  and  1 > rx/n > -1. 
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  Hence by (11), 
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  Again, equality holds if and only if x = 0. 

 

Note :  If r is irrational, we choose an infinite sequence of rational numbers r1, r2, r3, ….,  

  such that rn tends to r as n tends to infinity. For part (a), we can extend to irrational r: 
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  Similar argument for part (b) completes the proof for the case where r ∈ R. 
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Proof  5   Use analysis 

 

Let    f(x) = (1 + x)r – 1 – rx   where  x > –1  and  r ∈ R\ {0, 1}   (12) 

 

Then f(x) is differentiable and its derivative is: 

  f ’(x) = r(1 + x)r-1 – r = r [(1 + x)r-1 – 1]         (13) 

from (13) we can get   f ’(x) = 0 ⇔ x = 0. 

 

(a) If  0 < r < 1,  then  f ’(x) > 0  ∀ x∈ (–1, 0)  and   f ’(x) < 0  ∀ x∈ (0, +∞).  

 ∴  x = 0  is a global maximum point of  f. 

 ∴ f(x) < f(0) = 0.  

 ∴ (1 + x)r ≤ 1 + rx  for  0 < r < 1. 

 

(b) If  r < 0  or  r > 1,  then  f ’(x) < 0  ∀ x∈ (-1, 0)  and   f ’(x) > 0  ∀ x∈ (0, +∞). 

∴  x = 0  is a global minimum point of  f.  

 ∴ f(x) > f(0) = 0.  

∴ (1 + x)r ≥ 1 + rx  for  r < 0  or  r > 1. 

 

Finally, please check that the equality holds for  x = 0  or for  r ∈ {0, 1}.  The proof is complete. 
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